This book was conceived, designed and produced by

Ivy Press

210 High Street, Lewes, East Sussex, BNJ 2NS, UK

Publisher Jason Hook
Editorial Director Caroline Earle
Art Director Michael Whitehead Designer Ginny Zeal
Profiles Text Viv Croot
Clossaries Text Charles Phillips
Project Editor Stephanie Evans
All rights reserved. No part of this book may be reproduced or transmitted in any form
or by any means, electronic or mechanical,
including photocopying recording or by and
information storage and retrieval system,
without prior permission in writing from
the publisher. The Australian Copyright
Act 1968 (the Act) allows a maximum of
whichever is the greater, to be
photocopied by any educationa
institution for its educational purposes
provided that the educational institution
(or body that administers it) has given a remuneration notice to Copyright

Murdoch Books Australia
83 Alexander Street,
Crows Nest NSW 206
Ph: $(612184250100$
Fax: $(612) 99062218$
www.murdochbooks.com.au
info@murdochbooks.com.au
Murdoch Books UK
Erico House, 6th Floor,
93-99 Upper Rochmond Road
Putney, London SW 15 2TC
Phone: (44 0) 2087855995
Fax: (440 0) 2087855985
www.murdochbooks.co.uk
info@murdochbooks.co.uk
Cataloguing-in-Publication details are available
from the National Library of Australia
www.trove.nla.gov.au
ISBN: 9781743360835
Printed in China
Colour origination by lvy Press Reprographics
10987654321

CONTENTS

50 The Stars

52 GLOSSARY
54 Colour \& Brightness of Stars
56 Binary Stars
58 Variable Stars
60 Giant Stars
62 White Dwarfs
64 Pulsars
66 Profile: Jocelyn Bell Burnel
68 Supernovae
70 Black Holes

The Planets

CLOSSARY
Mercury
Venus
The Earth
The Moon
Mars
Jupiter
Profile: Galileo
Saturn
Uranus \& Neptune
The Solar System
GLOSSARY
The Sun
38 The Solar Wind
40 Eris, Pluto \& Dwarf Planets
42 Asteroids
44 Profile: Copernicus
46 Comets
48 Meteors

72 The Milky Way
74 GLOSSAR
76 Constellations
78 Molecular Clouds \& Nebulae
80 Messier Objects
82 The Milky Way
84 Profile: William Herschel
86 The Other Galaxies
88 Galactic Structures

90 The Universe
92 GLOSSARY
94 The Big Bang
96 The Expanding Universe
98 Profile: Edwin Hubble
100 Cosmic Microwave Background
102 Beyond Visible Light
104 Cosmic X-Rays
106 Gamma Ray Bursts
108 Quasars
110 Dark Matter
112 Dark Energy

114 Space \& Time
116 GLOSSARY
118 Light-Years \& Parsecs
120 Ellipses \& Orbits
122 The Light Spectrum
124 Gravity
126 Relativity
128 Gravitational Lensing
130 Profile: Fritz Zwicky
132 Wormholes

134 Other Worlds

136 GLOSSARY
138 Extraterrestrials
140 Profile: Carl Sagan
142 Exoplanets
144 Hot Jupiters
146 Super-Earths \& Ocean Planets
148 Towards Another Earth
150 Evidence for Other Life
152 APPENDICES
154 Resources
156 Notes on Contributors
158 Index
160 Acknowledgements

MERCURY

the 30-second astronomy

3-SECOND BANG

 Named after the messenger of the ancient Roman gods, Mercury is a fast-moving planet of extremes-very hot by day and very cold by night.3-MINUTE ORBIT
Mercury's orbit is the most elliptical of any planet, as well as the closest to the Sun, so it experiences a large variation in gravitationa pull. This makes its orbit a test bed for the theory of gravity. Its orbit does not quite fit lsaac Newton's theory, but Albert Einstein's theory of gravity, known as General Relativity, solved the anomaly-and this was the first proof that Genera Relativity was better than Newton's theory.

Mercury is the smallest of the eight planets, with a diameter of 3,032 miles $(4,879 \mathrm{~km})$. The closest planet to the Sun, it is the speediest in its orbit: Mercury orbits the Sun in 88 Earth days. It rotates relative to the stars once on its axis every 59 days, turning three times on its axis for every two orbits. Because of the way that the planet rotates relative to the Sun as it orbits, its calendar is bizarre: a single day on Mercury from sunrise to sunrise) lasts two Mercurian years or 176 Earth days. Mercury has no seasons and the largest temperature range on any planet in our Solar System-from $800^{\circ} \mathrm{F}\left(400^{\circ} \mathrm{C}\right.$) at noon on its equator to $-300^{\circ} \mathrm{F}\left(-200^{\circ} \mathrm{C}\right)$ near its poles at night; the temperature is especially low in the perpetually shadowed bottoms of its polar craters, where there are accumulations of ice. Mercury has a cratered, solid surface, much like the Moon. Its atmosphere is tenuous (lacking in density) and consists of atoms trapped from the Sun or outgassed from its hot surface. Mercury's craters were formed in the same way as the craters on the Moon, through bombardment by asteroids and meteors.

ELATED TOPICS
See also
HE MOON
page 20
ELLIPSES \& ORBITS
page 120
GRAVITY
page 124
relativity
page 126

3-SECOND BIOGRAPHY albert Einstein
1879-1955
German-Swiss-American heoretical physicist

30-SECOND TEXT Paul Murdin

ith little atmosphere to act as an insulating blanket, Mercury's emperature plummets by hundreds of degrees as night falls.

VENUS

the 30-second astronomy

3-SECOND BANC

In some respects Earth's twin, the planet Venus has suffered global catastrophes that have made its surface hellish-hot, black rock beneath a sulfurous sky.

3-MINUTE ORBIT

Space vehicles sent to Venus must be strengthened to withstand the atmospheric pressure labout go times the pressure on Earth) and proofed against sulfuric acid rain falling from the clouds. They also have to withstand the searing heat. Landing craft that have survived the descent have survive the descent and landed on the rock without falling over have operated only for an hour or so. The existence of Venusian extraterrestria seems improbable.

Venus is roughly the size of the Earth, with a diameter of 7,521 miles $(12,104 \mathrm{~km})$. It orbits the Sun inside the Earth's orbit, once every 224 days, and rotates every 243 daysbackward. Like Earth, Venus has an atmosphere, but on Venus this is hot, dense, and consists primarily of carbon dioxide, creating an intense greenhouse effect that passes on the Sun's heat to the surface and traps it below the atmosphere. As a result, the temperature on Venus averages $890^{\circ} \mathrm{F}\left(480^{\circ} \mathrm{C}\right)$-hot enough to melt zinc. Seen from outside, the atmosphere supports opaque clouds that completely obscure the surface; seen from below, the sky is sulfurous yellow, as imaged by space vehicles that have landed to record the environment. Venus has been mapped by cloud-piercing radar both from Earth and from a space satellite, Magellan (1990-94). The surface is completely dry, and made of scaly, black, volcanic rocks. Venus has more than 100 volcanoes, with solidified rivers of lava on their sides. Most terrestrial volcanoes are due to upwelling magma penetrating the surface of a planet at the edges of colliding tectonic plates-Venus has no tectonic plates and its volcanoes are fed through weak surface spots.

RELATED TOPICS
See also
METEORS
page 48
extraterrestrials
page 138

3-SECOND BIOGRAPHY CARL SAGAN 1934-96 American astronomer who dentified the greenhouss
effect on Venus

30-SECOND TEXT

Paul Murdin

A featureless black

 spot when silhouetted against the Sun during transit, Venus has been revealed by space satellites to be a volcanic wasteland.

